Poisson Analysis - Predicted Boundaries.
Source:R/Analyze_Poisson_PredictBounds.R
Analyze_Poisson_PredictBounds.Rd
Fits a Poisson model to site-level data and then calculates predicted count values and upper- and lower- bounds for across the full range of exposure values.
Usage
Analyze_Poisson_PredictBounds(
dfTransformed,
vThreshold = c(-5, 5),
nStep = NULL
)
Arguments
- dfTransformed
data.frame
Transformed data for analysis. Data should have one record per site with expected columns:GroupID
,GroupLevel
,Numerator
,Denominator
, andMetric
. For more details see the Data Model vignette:vignette("DataModel", package = "gsm")
. For this function,dfTransformed
should typically be created usingTransform_Rate()
.- vThreshold
numeric
upper and lower boundaries in residual space. Should be identical to the thresholds used AE_Assess().- nStep
numeric
step size of imputed bounds.
Value
data.frame
containing predicted boundary values with upper and lower bounds across the
range of observed values.
Statistical Methods
This function fits a Poisson model to site-level data and then calculates residuals for each
site. The Poisson model is run using standard methods in the stats
package by fitting a glm
model with family set to poisson
using a "log" link. Upper and lower boundary values are then
calculated using the method described here TODO: Add link.
Examples
dfTransformed <- Transform_Rate(analyticsInput)
dfBounds <- Analyze_Poisson_PredictBounds(dfTransformed, c(-5, 5))
#> → nStep was not provided. Setting default step to 0.0128712626417737