Calculate the change of user-specified metrics from the previous snapshot date. The primary use case of this function is to check for changes in the metrics when determining if continued flags should be actioned.
Arguments
- dfResults
data.frame
A stacked summary of analysis pipeline output. Created by passing a list of results returned bygsm.core::Summarize()
toBindResults()
. Expected columns:GroupID
,GroupLevel
,Numerator
,Denominator
,Metric
,Score
,Flag
,MetricID
,StudyID
,SnapshotDate
.- dfResultsLongitudinal
data.frame
A stacked summary of analysis pipeline output from the previous snapshot. Created by passing a list of results returned bygsm.core::Summarize()
toBindResults()
. Expected columns:GroupID
,GroupLevel
,Numerator
,Denominator
,Metric
,Score
,Flag
,MetricID
,StudyID
,SnapshotDate
.- strIDColumns
character
A vector of column names with which to group results. Default:StudyID
GroupLevel
GroupID
MetricID
- strSnapshotDateColumn
character
The name of the column containing the snapshot date. Default:SnapshotDate
.- dPrevSnapshotDate
Date
The date of the previous snapshot to be compared. Optional. Default =NULL
.- strMetricColumns
character
A vector of numeric column names with which calculate change from previous snapshot. Default:Numerator
Denominator
Metric
Score
Flag
Value
data.frame
A transposed table of results with a column for each attribute, its value,
and the change from the previous snapshot.
Examples
dfResults <- gsm.core::reportingResults |> dplyr::filter(SnapshotDate == "2025-04-01")
dfResultsLongitudinal <- gsm.core::reportingResults |> dplyr::filter(SnapshotDate != "2025-04-01")
dfChChChChanges <- CalculateChange(
dfResults = dfResults,
dfResultsLongitudinal = dfResultsLongitudinal
)