Skip to contents

`r lifecycle::badge("stable")`

The function creates all available charts for a metric using the data provided

Usage

Visualize_Metric(
  dfResults = dfResults,
  dfBounds = NULL,
  dfGroups = NULL,
  dfMetrics = NULL,
  strMetricID = NULL,
  strSnapshotDate = NULL,
  bDebug = FALSE
)

Arguments

dfResults

`data.frame` A stacked summary of analysis pipeline output. Created by passing a list of results returned by [Summarize()] to [BindResults()]. Expected columns: `GroupID`, `GroupLevel`, `Numerator`, `Denominator`, `Metric`, `Score`, `Flag`, `MetricID`, `StudyID`, `SnapshotDate`.

dfBounds

`data.frame` Set of predicted percentages/rates and upper- and lower-bounds across the full range of sample sizes/total exposure values for reporting. Created by passing `dfResults` and `dfMetrics` to [MakeBounds()]. Expected columns: `Threshold`, `Denominator`, `Numerator`, `Metric`, `MetricID`, `StudyID`, `SnapshotDate`.

dfGroups

`data.frame` Group-level metadata dictionary. Created by passing CTMS site and study data to [MakeLongMeta()]. Expected columns: `GroupID`, `GroupLevel`, `Param`, `Value`.

dfMetrics

`data.frame` Metric-specific metadata for use in charts and reporting. Created by passing an `lWorkflow` object to [MakeMetric()]. Expected columns: `File`, `MetricID`, `Group`, `Abbreviation`, `Metric`, `Numerator`, `Denominator`, `Model`, `Score`, and `Threshold`. For more details see the Data Model vignette: `vignette("DataModel", package = "gsm.core")`.

strMetricID

`character` MetricID to subset the data.

strSnapshotDate

`character` Snapshot date to subset the data.

bDebug

`logical` Display console in html viewer for debugging. Default is `FALSE`.

Value

A list containing the following charts: - scatterPlot: A scatter plot using JavaScript. - barChart: A bar chart using JavaScript with metric on the y-axis. - timeSeries: A time series chart using JavaScript with score on the y-axis. - metricTable: A table containing all

Examples

lCharts <- Visualize_Metric(
  dfResults = gsm.core::reportingResults,
  dfBounds = gsm.core::reportingBounds,
  dfGroups = gsm.core::reportingGroups,
  dfMetrics = gsm.core::reportingMetrics,
  strMetricID = "Analysis_kri0001"
)
#> Parsed -2,-1,2,3 to numeric vector: -2, -1, 2, 3